메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
허민오 (서울대학교) 장병탁 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제22권 제11호
발행연도
2016.11
수록면
614 - 618 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
인터넷 상 데이터와 스마트 디바이스가 증가함에 따라 순차적으로 유입되는 스트림 형식의 데이터가 늘어나고 있다. 잠재적인 빅데이터인 스트림 데이터를 다루기 위해서는 온라인 학습이 가능해야 한다. 이에 본 고에서는 스트림 데이터 학습을 위한 새로운 모델인 예측적 컨볼루션 신경망과 온라인 학습방법을 제안한다. 이 모델은 탐지와 풀링을 반복하는 컨볼루션 연산을 통해 탐지 패턴을 계층화하여 상위계층이 될수록 긴 길이의 패턴의 정보를 다루도록 한다. 본 모델의 기초적 검증을 위해 스마트폰으로 2달간 수집한 GPS 데이터를 이산화하여 관측데이터로 삼았다. 이를 제안모델을 통해 학습하여 계층을 따라 추상화된 정보로부터 복원한 데이터와 관측데이터를 비교하여, 긴 시간의 패턴을 다루면서도 관측 수준의 데이터를 복원하는 것을 확인하였다.

목차

요약
Abstract
1. 서론
2. 제안 모델
3. 실험 결과
4. 결론
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0