메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Swe Swe Aung (University of the Ryukyus) Yu Senaha (University of the Ryukyus) Shin Ohsawa (Weathernews Inc.) Itaru Nagayama (University of the Ryukyus) Shiro Tamaki (University of the Ryukyus)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.7 No.2
발행연도
2018.4
수록면
107 - 115 (9page)
DOI
10.5573/IEIESPC.2018.7.2.107

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Heavy rainfall has frequently caused serious flooding and landslides, increasing traffic delays in most parts of the world. Consequently, the people in areas battered by heavy rainfall face many hardships. Thus, the negative effects of torrential rainfall always remind researchers to keep seeking the ways to prevent such damage. Therefore, we designed a system for short-term prediction of localized heavy downpours by using radar images coupled with a machine learning method. Here, we introduce a new approach, named dual k-nearest neighbor (dual-kNN), for shortterm rainfall prediction by upgrading the ordinary classification routines of classical k-nearest neighbors (k-NN). dual-kNN is able to maintain highly robust classification of various K values with an advanced simple dual consideration, where observation of a targeted object can be found not only in the specified region but also in other related regions. We conducted experimentations using 2011, 2013, and 2014 data sets collected from the WITH small-dish aviation radar installed on the rooftop of Information Engineering, University of the Ryukyus. Then, we compared the prediction accuracy of our new approach with classical k-NN. It was experimentally confirmed with test cases and simulations that the performance of dual-kNN is more effective than classical k-NN.

목차

Abstract
1. Introduction
2. Related Work
3. WITH Radar and Rainfall Level
4. Phenomenon of Localized Rainfall
5. Overall Proposed System Architecture and Prediction Model
6. Experimental Results
7. Conclusion
References

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-002044316