메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김량형 (국립한밭대학교 경영학과) 유동희 (경상대학교 경영정보학과) 김건우 (국립한밭대학교 경영학과)
저널정보
한국경영정보학회 Information Systems Review Information Systems Review 제18권 제2호
발행연도
2016.1
수록면
173 - 198 (26page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구의 목적은 비즈니스 인텔리전스 연구 관점에서 기업부실화 예측 성능을 향상키시는 것이다. 이를 위해 본 연구는 기존 연구들에서 미흡하게 다루어졌던 1) 데이터셋을 구성하는 과정에서 발생하는 바이어스 문제, 2) 거시경제위험 요소의 미반영 문제, 3) 데이터 불균형 문제, 4) 서술적 바이어스 문제를 다루어 경기순환국면을 반영한 기업부실화 예측 프레임워크를 제안하고, 이를 바탕으로 기업부실화 예측 모델을 개발하였다. 본 연구에서는 경기순환국면별로 각각의 데이터셋을 구성하고, 각 데이터셋에서 의사결정나무, 인공신경망 등 단일 분류기부터 앙상블 기법까지 다양한 데이터마이닝 알고리즘을 적용하여 실험하였다. 또한 본 연구는 데이터불균형 문제를 해결하기 위해, 오버샘플링 기법인 SMOTE(synthetic minority over-sampling technique) 기법을 통해 초기 데이터 불균형 상태에서부터 표본비율을 1:1까지 변화시켜 가며, 기업부실화 예측 모델을 개발하는 실험을 하였고, 예측 모델의 변수 선정 시에 선행연구를 바탕으로 재무비율을 추출하고, 여기서 파생된 IT 산출물인 재무상태변동성과 산업수준상태변동성을 예측 모델에 삽입하였다. 마지막으로, 본 연구는 각 순환국면에서 만들어진 기업부실화 예측 모델의 예측 성능 비교와 경기 확장기와 수축기에서의 기업부실화 예측 모델의 유용성에 대해 논의하였다. 본 연구는 비즈니스 인텔리전스 연구 측면에서 기존 연구에서 미흡하게 다루어졌던 4가지 문제점을 검토하고, 이를 해결할 프레임워크를 제안함으로써 기존 연구 대비 기업부실화 예측률을 10% 이상 향상시켰다는 점에서 연구의 의의를 찾을 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (58)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0