메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이현지 (Inha University) 강현아 (Inha University) 이승현 (Inha University) 이창현 (Inha University) 박승보 (Inha University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제26권 제7호(통권 제208호)
발행연도
2021.7
수록면
29 - 36 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 딥러닝 모델을 이용하여 모바일 기기의 심전도 신호 측정 데이터를 분류한다. 비정상 심장박동을 높은 정확도로 분류하기 위해 딥러닝 모델의 구성 요소 세 가지를 선정하고 요소의 조건 변화에 따른 분류 정확도를 비교한다. 심전도 신호 데이터의 특징을 스스로 추출할 수 있는 CNN 모델을 적용하고 모델을 구성하는 모델의 깊이, 최적화 방법, 활성화 함수의 조건을 변경하여 총 48개의 조합의 성능을 비교한다. 가장 높은 정확도를 보이는 조건의 조합을 도출한 결과 컨볼루션 레이어 19개, 최적화 방법 SGD, 활성화 함수 Mish를 적용하였을 때 정확도 97.88%로 모든 조합 중 가장 높은 분류 정확도를 얻었다. 이 실험에서 CNN을 활용한 1-채널 심전도 신호의 특징 추출과 비정상 박동 검출의 적합성을 확인하였다.

목차

[Abstract]
[요약]
I. Introduction
II. Preliminaries
III. Configuration for Deep Learning Model
IV. Experimental Results
V. Conclusions
REFERENCES

참고문헌 (3)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0