메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
백성민 (세종대학교) 이성주 (세종대학교)
저널정보
대한전자공학회 대한전자공학회 학술대회 2021년도 대한전자공학회 하계종합학술대회 논문집
발행연도
2021.6
수록면
58 - 61 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose a convolution operation structure to accelerate the operation of convolution in YOLO v2 Tiny model. When a deep learning model is operated in hardware through a GPU, there is a problem of accessing and calculating the same data multiple times due to the small memory capacity of the hardware. To compensate for this problem, we propose a channel convolution method and a pipelining operation structure in the proposed convolution operation structure. Through channel convolution, the result is output without storing the partial sum generated during the convolution operation, and the access time for storing and loading in DDR memory and block ram is minimized. In addition, through pipeline convolution, the operation speed is improved by 2.57 times compared to general convolution.

목차

Abstract
I. 서론
II. 본론
Ⅲ. 구현
Ⅳ. 결론 및 향후 연구 방향
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0