메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이예지 (건국대학교) 김신 (건국대학교) 임한신 (한국전자통신연구원) 추현곤 (한국전자통신연구원) 정원식 (한국전자통신연구원) 서정일 (한국전자통신연구원) 윤경로 (건국대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제26권 제6호
발행연도
2021.11
수록면
738 - 747 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
오늘날 딥러닝 기술의 향상으로 영상 분류, 객체 탐지, 객체 분할, 객체 추적 등 컴퓨터 비전 분야 또한 큰 발전을 이루고 있다. 지능적 감시, 로봇, 사물 인터넷, 자율주행 자동차 등 딥러닝 기술이 결합된 다양한 응용 기술들은 실제 산업에 적용되고 있으며, 이에 따라 사람의 소비를 위한 영상 데이터 뿐만 아니라 머신 비전을 위한 영상 데이터의 효율적인 압축 방식에 대한 필요성이 대두되고 있다. 본 논문에서는 머신 비전을 위한 열 적외선 영상의 객체 기반 압축 기법을 제안한다. 효율적인 영상 압축과 신경망의 좋은 성능을 유지하기 위해 본 논문에서는 신경망의 객체 탐지 결과와 객체 크기에 따라 입력 영상을 객체 부분과 배경 부분으로 나누어 서로 다른 압축률로 부호화를 수행하는 방법을 제안한다. 제안하는 방법은 VVC로 영상 전체를 압축하는 방식보다 BD-rate 값이 최대 -19.83%로 압축 효율이 뛰어나다는 것을 확인할 수 있다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 본론
III. 실험 결과 및 분석
Ⅳ. 결론
참고문헌

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-567-000066644