메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Sang Hyeon Oh (Hyundai Motor Company) Kwak Dong Hwan (Hyundai Motor Company) Hyun Tek Lim (Hyundai Motor Company)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
1,904 - 1,907 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The SLAM algorithm has been extensively researched and has gained significant relevance in our daily lives, particularly with the advancements in robot technology and autonomous driving. Currently, SLAM can be largely divided into 2D SLAM and 3D SLAM. In the case of 2D SLAM, accurate mapping and localization of the plane can be achieved with low computational requirements. However, it has the limitation of not considering 3D information. In contrast, 3D SLAM can generate maps and perform localization in complex indoor spaces with obstacles by incorporating 3D data on objects. However, it may face challenges in real-time implementation in embedded systems due to high computational demands. In this paper, we propose a 2.5D SLAM using the Life Long Feature(LLF) algorithm. First, 2.5D SLAM is a projection of 3D camera feature points that are not perceived by the 2D-Lidar onto the 2D-Lidar plane. The transformation matrix to project camera feature to 2D-Lidar plane is calculated by optimizing least-square problem of the same points recognized by the camera and 2D-Lidar. Additionally, the LLF algorithm enables the updating and maintenance of camera feature points based on the robot"s current position, even when the camera is not perceiving objects. The difference in Field Of View(FOV) between the camera and the LiDAR causes the problem of being recognized as a dynamic object and removing feature points. The LLF algorithm can solve this problem even when the object is within the range of the 2D-LiDAR but not visible in the camera"s FOV. In experiment, we confirmed our proposed 2.5D SLAM with LLF algorithm show better performance in detecting 3D objects and Mapping than pervious 2D SLAM.

목차

Abstract
1. INTRODUCTION
2. PROPOSED METHOD
3. EXPERIMENT
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088266679