메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Seongyun Shin (Pusan National University) Seonghyun Park (Pusan National University) Kwang Hyo Jung (Pusan National University) Sung Boo Park (Samsung Heavy Industries)
저널정보
한국해양공학회 한국해양공학회지 한국해양공학회지 제38권 제6호(통권 제181호)
발행연도
2024.12
수록면
426 - 437 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study aimed to propose an Artificial neural network (ANN) model to fill missing wave data using Bayesian optimization of hyperparameters. Ocean environmental data obtained by ocean buoys have been missed due to the malfunction or maintenance of monitoring system or extremely harsh weather condition during a storm. It is important of the continuity of measured data to analyze ocean environmental condition for the engineering purpose such as the design condition for offshore structure and the assessment of wave condition for a long term return period using the extreme analysis. Five ANN models were applied to estimate three wave parameters of significant wave height, peak wave period, and wave direction using of measurement data at Geomundo ocean buoy for eight years (2010-2017). The wind data of European Centre for Medium-Range Weather Forecasts were employed to estimate the wave parameters with ANN models to fill missing wave data at Geomundo ocean buoy. By comparison of each ANN model result, it could be suggested Bidirectional gated recurrent unit network, Gated recurrent unit network, Feed-forward neural network for the best model to fill the significant wave height, peak wave period and wave direction, respectively. These three ANN models could be applied to fill a long-term missing wave data at ocean buoys.

목차

ABSTRACT
1. Introduction
2. Data Collection and Analysis
3. Design of ANN Models and Machine Learning
4. Results
5. Conclusions
References

참고문헌 (20)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091245581