메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Min-Gun Kim (Ucess Partners) Kyoung-jae Kim (Dongguk University_Seoul)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제22권 제4호
발행연도
2016.12
수록면
1 - 18 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
협업필터링은 사용자의 선호도 평가자료를 이용하여 특정 사용자의 특정 상품에 대한 선호도를 예측하고 이를 이용하여 유사한 사용자에게 상품을 추천한다. 협업필터링은 전자상거래에서의 정보 과잉현상을 줄여 주기에 가장 인기 있는 개인화 기법이다. 그러나 협업필터링은 희소성과 확장성 문제 등을 가지고 있다. 본 연구에서는 희소성과 확장성 문제와 같은 협업필터링의 주요 한계점을 보완하고 추천과정에 사용자의 정성적이고 감성적인 정보를 반영하도록 하기 위하여 사회연결망 정보와 협업필터링을 접목하는 방안을 이용한다. 본 논문에서는 특이값 분해에 내재적인 정보를 반영할 수 있도록 확장한 SVD++에 사회연결망 정보를 고려할 수 있도록 한 Social SVD++ 알고리듬을 협업필터링에 접목한 새로운 추천 알고리듬을 이용한다. 특히, 본 연구는 추천과정에 실제 사용자의 사회연결망 정보를 반영하여 모형의 성과를 평가할 것이다.

목차

1. Introduction
2. Prior Research
3. Social SVD++ CF
4. Research Data and Experiments
5. Conclusions
References
국문요약

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-003-002045281