메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강형석 (서울미디어대학원대학교) 양장훈 (서울미디어대학원대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.46 No.10
발행연도
2019.10
수록면
1,088 - 1,093 (6page)
DOI
10.5626/JOK.2019.46.10.1088

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
자연어 처리를 이용한 인공 지능 활용이 증가하면서 단어 임베딩에 대한 중요성이 증가하고 있다. 이 논문에서는 단어 임베딩에 활용되는 word2vec 모델이 단어들 간의 대립 및 상하 관계를 표현하는 능력을 군집화 특성과 t-SNE 분포를 이용하여 정성적으로 분석하였다. 이를 위하여 10가지 범주에 속하는 단어들에 대해서 K-Means 알고리즘에 따라서 군집화를 실시하였다. 단어의 대립 관계는 일부 제대로 표현되지 않는 경우가 발생하였다. 이는 일부 대립 관계에 있는 단어들이 다수의 공통적인 속성을 갖고 있으면서 소수의 대립적 속성만을 갖고 있기 때문으로 보인다. 또한, 단어의 상하 관계는 word2vec 모델에서 전혀 반영되지 않음이 확인되었다. 그 원인은 단어의 상하 관계가 언어의 자연스러운 습득 과정이 아니라, 지식 체계의 학습 과정을 통해 획득되는 정보이기 때문인 것으로 보인다. 따라서 분산 가설에 근거한 word2vec 모델은 일부 단어의 대립 관계를 표현하는 데 한계가 있고, 단어의 상하 관계를 제대로 표현하지 못하는 것으로 분석되었다.

목차

요약
Abstract
1. 서론
2. 단어의 의미 관계[6]
3. 데이터 및 방법
4. 결과 및 분석
5. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0